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Abstract The paper deals with Image Space Analysis for constrained extremum problems
having infinite dimensional image. It is shown that the introduction of selection for point-
to-set maps and of quasi-multipliers allows one to establish sufficient optimality conditions
for problems, where the classic ones fail.
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1 Introduction

Assume we are given the integers m, n and p with m ≥ 0, 0 ≤ p ≤ m, n > 0, the interval
T := [a, b] ⊂ IR with −∞ ≤ a ≤ b ≤ +∞, and the functions

ψi : IR × IRn × IRn → IR, i = 0, 1, . . . ,m.

Let V be a subset of C0(T )n, namely, the set of all continuous functions x(t) = (x1(t), . . . ,
xn(t)) having continuous derivatives x ′(t) = (x ′

1(t), . . . , x ′
n(t)), t ∈ T, except at most

for a finite number of points t at which exist and are finite lim
t↓t

x ′(t) and lim
t↑t

x ′(t); x ′(t) :=
lim
t↓t

x ′(t).V forms a vector space on the set of real numbers, and is equipped with the norm
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||x ||∞ := max
t∈T

||x(t)||, x ∈ V,where ||•|| denotes the Euclidean norm in IRn . X is defined as

the subset of V, whose elements satisfy a boundary condition, like fixed endpoint condition
x(a) = x0 and x(b) = x1, x0 and x1 being given vectors of IRn .

Let us consider the following geodesic-type minimization problem:

f ↓ := min[ f (x) :=
∫

T

ψ0(t, x(t), x ′(t))dt], (1a)

subject to
ψi (t, x(t), x ′(t)) = 0, ∀t ∈ T, i ∈ I0 := {1, . . . , p}, (1b)

ψi (t, x(t), x ′(t)) ≥ 0, ∀t ∈ T, i ∈ I+ := {p + 1, . . . ,m}, (1c)

x ∈ X ⊆ C0(T )n, (1d)

where p = 0 ⇒ I0 = ∅, p = m ⇒ I+ = ∅, m = 0 ⇒ I := I0 ∪ I+ = ∅. Unless
differently stated, we will assume that card X > 1.

Let us set D := Op × IRm−p
+ with Op := (0, . . . , 0) ∈ IRp; we stipulate that D = IRm+

when p = 0 and D = Om := (0, . . . , 0) ∈ IRm when p = m; m = 0 does not require to
define D. Set ψ := (ψ1, . . . , ψm). The set

R := {x ∈ X : ψ(t, x(t), x ′(t)) ∈ D, ∀t ∈ T }
is the feasible region of problem (1).

In the image space approach [2], the optimality of a feasible point is expressed by means
of the disjunction of suitable subsets K and H of the image space defined as the product
space where the images of the objective and the constraint functions run.

The disjunction between K and H is proved by showing that they lie in two disjoint level
sets of a separating functional. When such a functional can be found linear, we say that K
and H admit a linear separation.

A key point in the analysis is represented by the dimension of the image space, which can
be finite or infinite, according to the nature of the constraints. For example, the image associ-
ated to an isoperimetric problem is finite-dimensional, while the geodesic-type problem (1)
has an infinite-dimensional image.

The case of a finite-dimensional image has been widely studied and many of the results
obtained in this context can be generalized to an infinite dimensional problem under suitable
additional assumptions (in particular, that K or H has non-empty interior).

A further possibility of developing the analysis consists in associating with (1) a finite-
dimensional image. This can be achieved by considering the constraints as multifunctions
with values in suitable subsets of a finite-dimensional space.

In the hypothesis of continuity of the functions involved, the existence of a selection for
the image multifunction, such that its range has an empty intersection with a suitable subset
of the image space, is a necessary and sufficient optimality condition for (1).

Such a selection can be expressed as a weighted integral and the weights, called “selection
quasi multipliers”, can be considered an enlargement of the class of multipliers associated
with (1). When the selection multipliers do not locally depend on the unknown x of the
problem, the classic necessary or sufficient optimality conditions of Calculus of Variations
can be recovered.
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Necessary optimality conditions have been analysed in [5], while in the present paper we
focus our attention on sufficient optimality conditions. In particular, we will provide some
examples where, by considering the class of selection quasi- multipliers, it is possible to
obtain saddle point conditions for a generalized Lagrangian associated with (1).

The analysis carried out in the paper can be performed also locally by replacing X with
X ∩ Nρ(x̄), where Nρ(x̄) is the ball of center x̄ and radius ρ > 0.

2 General features of image space analysis

Consider any x ∈ R and observe that x is a global minimum point (1), iff the system (in the
unknown x):

f (x)− f (x) > 0, ψ(t, x(t), x ′(t)) ∈ D, ∀t ∈ T, x ∈ X (2)

is impossible.
When x ∈ X is fixed, then ψ becomes a function of t only. The set of the functions

ψ̃(x), x ∈ X where ψ̃(x)(t) = ψ(t, x(t), x ′(t)), is a subset of an infinite dimensional space.
Therefore, unlike what happens for isoperimetric-type problems (and, of course, for extre-
mum problems in IRn ) the analysis of the image of (1) or (2) should be carried on in a Banach
Space. Such an infinite dimensionality cannot be deleted; however, it can be postponed to
the introduction of the Image Space (IS). This can be done by the following approach.

The image of x through ψ̃i is again a function defined on T ; the image of ψ̃i (x)(·) is
a subset of IR. Hence, we can introduce the multifunction, which sends x into a subset of
IR1+m, namely Ax : X ⇒ Y ⊆ IR1+m, defined by:

Ax (x) : = {(u, v) ∈ IR1+m : u = f (x)− f (x) and ∃ t ∈ T s.t.

vi = ψi (t, x(t), x ′(t)), i ∈ I}.

Ax (x) := {(u, v) ∈ IR1+m : u = f (x)− f (x), vi = ψi (t, x(t), x ′(t)), t ∈ T, i ∈ I}.
Kx̄ := Ax (X) is called the image of (1). By means of the above multifunction, we are able to
work in a finite dimensional Image Space, namely IR1+m; the infinite dimensionality has not
been deleted, but postponed, and it will appear again later in terms of selection from Ax (X).

By introducing the set H := (IR+\{O})× D, it is easy to see that (2) is impossible, iff

Ax (x) � H, ∀x ∈ X. (3)

The infinite dimensionality, which has been postponed in order to be able to introduce a finite
dimensional IS, appears now with the selection, ∀x ∈ X , of an element of Ax (x).

Consider the functions ωi : T → IR, i ∈ I. Denote by � the set of vectors ω :=
(ω1, . . . , ωm), whose elements are not all identically zero on T and such that ωi ≥ 0, i ∈
I+;� represents a class of functional parameters satisfying a suitable condition, under which
the integral in (4) makes sense. The selection in this case is specified to be of type � :
2IR1+m ×� → IR1+m, defined by:

�(Ax̄ (x), ω) :=
∫

Ax (x)

ωdt =
⎛
⎝ f (x)− f (x),

∫

T

ωi (t)ψi (t, x(t), x ′(t))dt, i ∈ I
⎞
⎠ (4)

where the 1st integral is a short writing to mean selection of an element of Ax (x) by means
of a weighted integration.
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Definition 1 � is called generalized selection function of Ax (for short, GSF), iff

∀x ∈ X, Ax (x) ⊆ H ⇔ �(Ax , ω) ∈ H, ∀ω ∈ �. (5)

Observe that (5) is equivalent to (note that ω depends on x):

∀x ∈ X, Ax (x) �⊆ H ⇔ ∃ω ∈ � s.t. �(Ax (x), ω) �∈ H. (6)

ω is called selection multiplier (for short, SM).

From the so-called Fundamental Lemma of the Calculus of Variations [6], we draw the
following:

Lemma 1 Let α ∈ C0[a, b] be such that:

b∫

a

α(t)φ(t)dt ≥ 0, ∀φ ∈ C1
0 [a, b],

where C1
0 [a, b] := {φ ∈ C1[a, b] : φ(t) ≥ 0,∀t ∈ [a, b], φ(a) = φ(b) = 0}; then

α(t) ≥ 0, ∀t ∈ [a, b].
Proof Ab absurdo, assume that ∃t̄ ∈ [a, b] such that α(t̄)<0; since α is continuous on [a, b],
then there exists an interval [t1, t2] ⊆ [a, b] such that t̄ ∈ [t1, t2] and

α(t) < 0, ∀t ∈ [t1, t2].
Choose φ̄ ∈ C1

0 [a, b] in the following way

φ̄(t) =
{
(t − t1)2(t − t2)2 if t ∈ [t1, t2]

0 if t ∈ [a, b] \ [t1, t2].
Then

∫ b
a α(t)φ̄(t)dt < 0, a contradiction. ��

Next theorem shows that under continuity hypotheses on the involved functions, (4) is a
GSF.

Theorem 1 If � = C0(T )m and ψi , i ∈ I are continuous, then (4) is a GSF.

Proof Let x ∈ X . Suppose that Ax (x) ⊆ H, i.e. (2) holds.

f (x)− f (x) > 0, ψi (t, x(t), x ′(t)) = 0, i ∈ I0, ψi (t, x(t), x ′(t)) ≥ 0, i ∈ I+,
∀t ∈ T (7)

Then, since ωi ≥ 0, i ∈ I+,∀ω ∈ �, we have

f (x)− f (x) > 0,
∫

T

ωi (t)ψi (t, x(t), x ′(t))dt = 0, i ∈ I0,

∫

T

ωi (t)ψi (t, x(t), x ′(t))dt ≥ 0, i ∈ I+, ∀t ∈ T, (8)

and hence, �(Ax , ω) ∈ H, ∀ω ∈ �. Conversely, assume that �(Ax , ω) ∈ H, ∀ω ∈ �,
that is (8) holds whatever ω ∈ � may be. Since x ∈ V, then ψi (t, x(t), x ′(t)) is a bounded
function continuous on T, except for a finite number of points t1, . . . , tk , i ∈ I. Suppose
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that i ∈ I0. Applying the Fundamental Lemma of Calculus of Variations in the interval
[a, b] := [t j , t j+1], j = 1, . . . , k − 1,we obtain

ψi (t, x(t), x ′(t)) = 0, t ∈ T, i ∈ I0.

Analogously, for i ∈ I+, applying Lemma 1 with α(t) := ψi (t, x(t), x ′(t), φ(t) :=
ω(t), t ∈ T , [a, b] := [t j , t j+1], j = 1, . . . , k − 1, we obtain that

ψi (t, x(t), x ′(t)) ≥ 0, t ∈ T, i ∈ I+. ��

In the subsequent part of the paper we will assume that the hypotheses of Theorem 1 are
fulfilled. The previous result leads us to introduce the selected problem.

Definition 2 Let ω(·, x) ∈ �, x ∈ X ; the following problem:

min f (x) :=
∫

T

ψ0(t, x(t), x ′(t))dt, (9a)

subject to

gi (x, ωi ) :=
∫

T

ωi (t, x)ψi (t, x(t), x ′(t))dt = 0, i ∈ I◦ (9b)

gi (x, ωi ) :=
∫

T

ωi (t, x)ψi (t, x(t), x ′(t))dt ≥ 0, i ∈ I+, (9c)

x ∈ X, (9d)

is called the selected problem associated with (1).

Set g(x, ω) := (g1(x, ω1), . . . , gm(x, ωm)).

Definition 3 The set:

Kx (ω) := {(u, v) ∈ IR × IRm : u = f (x)− f (x), vi = gi (x, ωi ), i ∈ I, x ∈ X}
is called the selected image of problem (1).

Proposition 1 x ∈ R is a (global) minimum point of problem (1), if and only if there exists
a function ω(t, x), ω(·, x) ∈ �, x ∈ X, such that:

H ∩ Kx (ω) = ∅. (10)

Proof (10) is equivalent to �(x; ω̄) /∈ H, ∀x ∈ X , where � is defined by (4). Therefore,
because of (6), we have that (10) is equivalent to (3). Hence, x is a global minimum point of
(1) iff (10) holds. ��

Remark 1 Since it is known from the IS Analysis in the finite dimensional case that (10) is
equivalent to

H ∩ (Kx (ω)− cl H) = ∅, (11)

Proposition 1 can be equivalently written using (11) instead of (10).
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The above analysis leads in a natural way to define, in the IS, a problem equivalent to (1).
The problem

max(u), s.t. (u, v) ∈ Ax̄ (x) ⊆ IR × D, x ∈ X, (12)

will be called image problem. When Ax̄ (x) is single-valued, it collapses to (see Ref. [2]):

max(u), s.t. (u, v) ∈ Kx̄ , v ∈ D.

Note that the unknown argument of the image problem is a set, in particular a point if Ax̄ (x)
is single-valued.

Proposition 2 x̃ is a solution of (1) iff ũ := f (x)− f (x̃) is a solution of (12).

Proof Let x̃ be a solution of problem (1), so that:

f (x̃) ≤ f (x), ∀x ∈ X s.t. ψ(t, x(t), x ′(t)) ∈ D, ∀t ∈ T . (13)

(13) can be equivalently written as ũ ≥ u, ∀(u, v) ∈ Ax̄ (x) such that Ax̄ (x) ⊆ IR × D,
x ∈ X , or

ũ = max
(u,v)∈Ax̄ (x)⊆IR×D,x∈X

u.

Vice versa, from a solution ũ of (12) we can easily recover (13). ��
The set Kx (ω) plays for (1) the same role played by the image set for problems hav-

ing finite dimensional image [1]. Therefore, it is conceivable to expect to extend to (1) the
IS Analysis, which has been exploited for isoperimetric-type problems and those with real
unknowns.

Proposition 3 Let x̄ ∈ R. Then x̄ is a global minimum point for (1), if and only if

conv Ax̄ (x) � H, ∀x ∈ X.

Proof Recall that H is convex and that a point x̄ is a global minimum point for (1) iff
Ax̄ (x) � H, ∀x ∈ X .

Only if Ab absurdo, suppose that ∃x̃ ∈ X , such that convAx̄ (x̃) ⊆ H. This implies
Ax̄ (x̃) ⊆ H and the optimality of x̄ is contradicted.

If Ab absurdo, suppose that ∃x̂ ∈ X such that Ax̄ (x̂) ⊆ H. It follows that convAx̄ (x̂) ⊆ H,
which contradicts the assumption. ��

3 A saddle point condition

The introduction of the selected problem (9) allows us to recover classic sufficient optimality
conditions under the additional assumption that the selection multiplier ω depends only on
t , namely

ω(t, x) = ω(t) ∈ �, ∀x ∈ X. (14)

In such case, problem (9) is associated with the Lagrangian function L : X × D∗ × �

defined by

L(x; λ, ω) :=
∫

T

(ψ0(t, x(t), x ′(t))−
m∑

i=1

λiωi (t)ψi (t, x(t), x ′(t))dt.
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Let D∗ denote the positive polar of D, 	 := {π := (θ, λ) ∈ IR+ × D∗} be a set of
parameters, and W(	) denote the set of (linear) functions w : IR × IRm ×	 → IR defined
by:

w(u, v; θ, λ) = θu + 〈λ, v〉, θ ∈ IR+, λ ∈ D∗. (15)

It is easy to show that:

H ⊂ lev>0 w(•; θ, λ), ∀θ > 0, ∀λ ∈ D∗. (16)

Proposition 4 Let x ∈ R. If there exist ω ∈ �, θ ∈ IR+\{O} and λ ∈ D∗, such that:

θ [ f (x)− f (x)] +
m∑

i=1

λi

∫

T

ωi (t)ψi (t, x(t), x ′(t))dt ≤ 0, ∀x ∈ X, (17)

then x is a global minimum point of (1), and we have:

λi

∫

T

ωi (t)ψi (t, x(t), x ′(t))dt = 0, ∀i ∈ I. (18)

Proof Taking into account Definitions 2 and 3, (17) implies that:

Kx (ω) ⊆ lev≤0 w(•; θ, λ).
This inclusion, (16) for (θ, λ) = (θ, λ), and Proposition 1 prove the 1st part of the thesis.
Since x ∈ R, then (18) is trivial, for i ∈ I◦

. (1c), (5) and (17) for x = x , and λi ≥ 0, i ∈ I+
(implied by λ ∈ D∗) let us achieve (18) also for any i ∈ I+. ��

Following the assumption of the above proposition, we assume θ > 0 so that it is not
restrictive to assume θ = 1.

Theorem 2 Let � := C0(T )m and ψi be continuous, i ∈ I. If there exist λ ∈ D∗, ω ∈ �
such that:

L(x; λ, ω) ≤ L(x; λ, ω) ≤ L(x; λ, ω), ∀x ∈ X, ∀(λ, ω) ∈ D∗ ×�, (19)

then x is a global minimum point of (1).

Proof Set ψ i (t) := ψi (t, x(t), x ′(t)), i ∈ I. The 1st of (19) is equivalent to:

∑
i∈I

∫

T

λiωi (t)ψ i (t)dt ≥
∑
i∈I

∫

T

λiωi (t)ψ i (t)dt, ∀(λ, ω) ∈ D∗ ×�. (20)

Let us prove that x ∈ R. Ab absurdo, suppose that ∃ r ∈ I and t ∈ T, such that either
ψr (t) �= 0 if r ∈ I◦

or ψr (t) < 0 if r ∈ I+. Since ψr is continuous, then it is possible to
find ω̃r ∈ C0(T ) such that

∫
T ω̃r (t)ψr (t)dt has the same sign asψr (t). Therefore, by setting

ω̃i ≡ 0, λi = λi , i ∈ I\{r},,we have that ω̃ := (0, . . . , ω̃r , . . . , 0) ∈ � and letting λr go to
either +∞ or −∞, according to, respectively, ψr (t) < 0 or ψr (t) > 0, the left-hand side
of (20) goes to −∞ and contradicts (20). Hence x ∈ R. Next we prove that (18) is fulfilled.
Since x ∈ R and (λ, ω) ∈ D∗ ×� then

λi

∫

T

ωi (t)ψ i (t)dt ≥ 0, ∀i ∈ I. (21)
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Moreover, by setting λ = 0 in (20), we obtain that

∑
i∈I

λi

∫

T

ωi (t)ψ i (t)dt ≤ 0. (22)

By (21) we have that equality holds in (22), (18) follows.
Taking into account (18), the 2nd of (19) becomes:

∫

T

ψ0(t, x, x ′)dt ≥
∫

T

ψ0(t, x, x ′)dt +
∑
i∈I

∫

T

λi ωi (t)ψi (t, x, x ′)dt, ∀x ∈ X,

so that the above inequality implies f (x) ≥ f (x) for each x ∈ R. ��

Corollary 1 Let� := C0(T )m and ψi be continuous, i ∈ I. If there exist λ ∈ D∗, , ω ∈ �
such that (19) holds, then (x, λ) is a saddle point on X × D∗ for the Lagrangian L(x; λ, ω)
associated with (9) where gi (x, ωi ) := gi (x, ωi ), i ∈ I, and, therefore, x is a global
minimum point for (9).

Theorem 3 Let Hu := {(u, v) ∈ IR1+m : u > 0, v = 0} and assume ∃ ω̄ ∈ � such that

T C(conv (Kx̄ (ω̄)− cl H)) ∩ Hu = ∅, (23)

where T C denotes the (Bouligand) tangent cone. If x̄ ∈ R, then ∃λ̄ ∈ D∗ such that (x, λ̄, ω̄)
is a saddle point of L(x; λ, ω) on X × (D∗ ×�) [i.e. (19) holds] and (18) is fulfilled.

Proof Let us set

f (x) =
∫

T

ψ0(t, x(t), x ′(t))dt and gi (x, ω̄i ) =
∫

T

ω̄iψi (t, x(t), x ′(t)dt, i ∈ I.

The condition (23) is equivalent to regular separation between H and Kx̄ (ω̄) [3], i.e. to the
existence of λ̄ ∈ D∗, such that u + 〈λ̄, v〉 ≤ 0, ∀(u, v) ∈ Kx̄ (ω̄).

This can be rewritten as

f (x̄) ≤ f (x)− 〈λ̄, g(x, ω̄)〉, ∀x ∈ X. (24)

Setting x = x̄ in (24), we obtain 〈λ̄, g(x̄, ω̄)〉 = 0. Substracting the last scalar product from
the left-hand side of (24), we get:

f (x̄)− 〈λ̄, g(x̄, ω̄)〉 ≤ f (x)− 〈λ̄, g(x, ω̄)〉, ∀x ∈ X. (25)

On the other side, we have 〈λ, g(x̄, ω)〉 ≥ 0, ∀(λ, ω) ∈ D∗ ×�, which implies:

f (x̄)−〈λ, g(x̄, ω)〉 ≤ f (x̄)−〈λ, g(x̄, ω̄)〉 ≤ f (x̄)−〈λ̄, g(x̄, ω̄)〉, ∀(λ, ω) ∈ D∗×�. (26)

From (26) and (25) we achieve the thesis. ��

Apart from the splitting of the classic Lagrange multiplier, say λi (t), into λi and ωi (t),
Theorem 2 is a classic condition. The Image Space Analysis, with the above factorization
of the classic multiplier, leads to see that an improvement is possible. Next examples show
simple obstacle problems for which (19) is not fulfilled.

123



J Glob Optim (2008) 40:197–208 205

Example 1 In (1) set T = [0, 1], p = 0, m = 1,ψ0(t, x, x ′) = x ,ψ1(t, x, x ′) = x3(t), x ≡
0, ∀t ∈ T , V = C0(T ), X = {x ∈ V : x(0) = x(1) = 0}. We have H = (IR+\{O})× IR+.

We will show that such a problem does not admit a saddle point for the Lagrangian function
( here λ1 = λ, ω1 = ω):

L(x; λ, ω) =
∫

T

(x(t)− λω(t)x3(t))dt,

where ω ∈ C0(T ). Here � := {ω ∈ C0(T ) : ω ≥ 0, ω �≡ 0}. To this aim, we will show that
supλ≥0 supω∈� infx∈X L(x; λ, ω) = −∞ or, equivalently,

inf
x∈X

L(x; λ, ω) = −∞, ∀ω ∈ �, ∀λ ≥ 0. (27)

Let W (t) :=
∫ t

0
ω(s)ds and I := W (1). If λ = 0, then infx∈X L(x; λ, ω) = −∞. Suppose

that λ �= 0. Since ω(t) �≡ 0 and ω(t) ≥ 0, on T , then W (t) is a non-identically zero and
non-decreasing function with W (0) = 0. Let t̄ ∈ T be s.t. W (t̄) = I/2 and consider the
function:

xa(t) =
{

0, if 0 ≤ t ≤ t̄,
−a sin

( 2π
I W (t)

)
, if t̄ ≤ t ≤ 1,

with a > 0. L(xa; λ, ω) =
∫

T

(xa(t)− λω(t)x3
a (t))dt =

1∫

t̄

[
−a sin

(
2π

I
W (t)

)
+ a3 sin3

(
2π

I
W (t)

)
ω(t)λ

]
dt.

Putting y = 2π
I W (t) we get dy = 2π

I ω(t)dt and we obtain

1∫

t̄

a3 sin3
(

2π

I
W (t)

)
ω(t)λdt =

2π∫

π

I a3

2π
sin3(y)λdy = −2a3 Iλ

3π
,

while

1∫

t̄

−a sin

(
2π

I
W (t)

)
dt ≤ a(1 − t̄).

Then L(xa; λ, ω) ≤ −2a3 Iλ

3π
+ a(1 − t̄) → −∞, a → +∞

which implies (27). ��
In the next example we show that, under the assumption (14), it is not always possible

to find a SM such that (1) is equivalent to (9). By Corollary 1, in such cases (19) cannot be
fulfilled.

Example 2 In (1) set T = [0, 1], p = 1, m = 2, n = 2,ψ0(t, x(t), x ′(t)) = −x2
1 (t)+x2(t),

ψ1(t, x(t), x ′(t)) = x1(t), ψ2(t, x(t), x ′(t)) = x3
2 (t), x(t) = (0, 0), ∀t ∈ T , V = C0(T )×

C0(T ), X = {x ∈ V : xi (0) = xi (1) = 0, i = 1, 2}.We have H = (IR+\{O})× {O} × IR+.
Consider problem (9) where we have supposed that the SM are independent of x , namely
ω := (ω1, ω2) ∈ C0(T )2. We want to show that (9) and (1) have different optimal values,
whatever ω ∈ C0(T )2 may be. We observe that this is true for ω1 ≡ 0. In such a case (9) is
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unbounded from below. Suppose that ω1 �≡ 0 and let W (t) := ∫ t
0 ω1(s)ds, I := W (1). Since

ω1 �≡ 0, then there exists an open interval ]a, b[⊂ T , such that:

ω1(t) > 0 or ω1(t) < 0, ∀t ∈]a, b[. (28)

Consider the function x̂(t) = (x̂1(t), x̂2(t)) where: x̂1(t) = sin
( 2π

I W (t)
)
, x̂2(t) =

0, t ∈ T . It is easy to show that x̂(t) is a feasible solution for (9):

1∫

0

sin

(
2π

I
W (t)

)
ω(t)dt =

∫ 2π

0

I

2π
sin(y)dy = 0,

where we have put y = 2π
I W (t) which implies dy = 2π

I ω(t)dt . Moreover

∫

T

ψ0(t, x̂(t), x̂ ′(t)dt = −
1∫

0

[
sin2

(
2π

I
W (t)

)]
dt ≤ −

b∫

a

[
sin2

(
2π

I
W (t)

)]
dt < 0.

The last inequality is due to the fact that, because of (28), the integrand function is strictly
positive a.e. on ]a, b[. This proves that the optimal value of (9) cannot coincide with the one
of (1). ��

4 Further developments

We have shown that well-known results, as Saddle Point Conditions, can be recovered assum-
ing that the selection multipliers do not depend on x . Anyway, the examples of the previous
section show that even elementary problems may escape from the classic Lagrange multipli-
ers theory. In order to extend the validity of such a theory, here we consider a wider class of
multipliers, called quasi-multipliers, which depend also on the unknown. This enlargement
is suggested by the Image Space Analysis of Sect. 2, which has led to split the multiplier
into two parts: selection from a multifunction, and separation of two sets. While the latter
remains unchanged, the former can be extended. To this end, we now consider the functions
ωi : T × X → IR, i ∈ I, such that ωi (•, x) ∈ �,∀x ∈ X (see Definition 2.1). Without any
fear of confusion, the domain of ω(t, x) is denoted again by �.

Next results are a straightforward generalization of those of Section 3.

Proposition 5 Let x ∈ R. If there exist ω(t, x) ∈ �, θ ∈ IR+\{O} and λ ∈ D∗, such that:

θ [ f (x)− f (x)] +
m∑

i=1

λi

∫

T

ωi (t, x)ψi (t, x(t), x ′(t))dt ≤ 0, ∀x ∈ X, (29)

then x is a global minimum point of (1), and we have:
λi

∫

T

ωi (t, x)ψi (t, x(t), x ′(t))dt = 0, ∀i ∈ I. (30)

Proof Quite similar to that of Proposition 4. ��
Assuming θ = 1, now the selected problem is associated with the following extended

Lagrangian function:

L(x; λ, ω(t, x)) :=
∫

T

(ψ0 −
m∑

i=1

λi ωi (t, x)ψi )dt,
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which differs from that of Sect. 2 only because of the dependence of ωi on x .

Theorem 4 If there exist λ ∈ D∗, ω(t, x) ∈ �, such that:

L(x; λ, ω(t, x)) ≤ L(x; λ, ω(t, x)) ≤ L(x; λ, ω(t, x)), ∀x ∈ X, ∀(λ, ω) ∈ D∗ ×�,

(31)
then x is a global minimum point of (1).

Proof Quite similar to that of Theorem 2. ��
As regards the examples analysed in Sect. 3, we will show that, using quasi-multipliers,

we can overcome the presence of a positive duality gap.

Definition 4 The Lagrangian dual associated with (1) is defined by

sup
λ∈D∗

sup
ω∈�

inf
x∈X

L(x; λ, ω).
v := f (x̄)− sup

λ∈D∗
sup
ω∈�

inf
x∈X

L(x; λ, ω)

is called the duality gap, provided that x̄ is a global optimal solution to (1).

Continuation of Example 1 In Sect. 3, we have seen that, if we suppose that (14) holds
then v = +∞ (see 27). Assume now that ω = ω(t, x). The Lagrangian dual is:

sup
λ∈D∗

sup
ω∈�

inf
x∈X

∫ 1

0
(x(t)− λω(t, x)x3(t))dt.

If we consider the function ω̄1(t, x) =
{−x if x ≤ 0

0 if x > 0
, which belongs to �, then it is easy

to show that:

sup
λ∈D∗

inf
x∈X

1∫

0

(x(t)− λω̄1(t, x)x3(t))dt = 0,

and thus the duality gap becomes 0. ��
Continuation of Example 2 The Lagrangian associated with (1) is:

L(x1, x2; λ1, λ2, ω1, ω2) =
1∫

0

(−x2
1 + x2 − λ1ω1x1 − λ2ω2x3

2

)
dt,

where ωi = ωi (t, x1, x2), xi = xi (t), i = 1, 2.

Chooseω1(t, x1, x2) = −x1 andω2(t, x1, x2) =
{−x2 if x2 ≤ 0

0 if x2 > 0
. Thenω = (ω1, ω2) ∈

� and, being

sup
λ∈D∗

inf
x∈X

1∫

0

(
x2

1 (λ1 − 1)+ x2 + λ2x4
2

)
dt = 0,

the duality gap becomes 0. ��
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